Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(5): 151, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553582

RESUMO

The ubiquity of hexavalent chromium (Cr(VI)) from industrial activities poses a critical environmental threat due to its persistence, toxicity and mutagenic potential. Traditional physico-chemical methods for its removal often entail significant environmental drawbacks. Recent advancements in remediation strategies have emphasized nano and bioremediation techniques as promising avenues for cost-effective and efficient Cr(VI) mitigation. Bioremediation harnesses the capabilities of biological agents like microorganisms, and algae to mitigate heavy metal contamination, while nano-remediation employs nanoparticles for adsorption purposes. Various microorganisms, including E. coli, Byssochlamys sp., Pannonibacter phragmitetus, Bacillus, Aspergillus, Trichoderma, Fusarium, and Chlorella utilize bioreduction, biotransformation, biosorption and bioaccumulation mechanisms to convert Cr(VI) to Cr(III). Their adaptability to different environments and integration with nanomaterials enhance microbial activity, offering eco-friendly solutions. The study provides a brief overview of metabolic pathways involved in Cr(VI) bioreduction facilitated by diverse microbial species. Nitroreductase and chromate reductase enzymes play key roles in nitrogen and chromium removal, with nitroreductase requiring nitrate and NADPH/NADH, while the chromium reductase pathway relies solely on NADPH/NADH. This review investigates the various anthropogenic activities contributing to Cr(VI) emissions and evaluates the efficacy of conventional, nano-remediation, and bioremediation approaches in curbing Cr(VI) concentrations. Additionally, it scrutinizes the mechanisms underlying nano-remediation techniques for a deeper understanding of the remediation process. It identifies research gaps and offers insights into future directions aimed at enhancing the real-time applicability of bioremediation methods for mitigating with Cr(VI) pollution and pave the way for sustainable remediation solutions.


Assuntos
Chlorella , Escherichia coli , Escherichia coli/metabolismo , Chlorella/metabolismo , NAD , NADP , Cromo/toxicidade , Biodegradação Ambiental , Nitrorredutases
2.
Heliyon ; 10(1): e22437, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163240

RESUMO

Syzygium aromaticum, commonly called clove, is a culinary spice with medical uses. Clove is utilized in cosmetics, medicine, gastronomy, and agriculture due to its abundance of bioactive components such as gallic acid, flavonoids, eugenol acetate, and eugenol. Clove essential oil has been revealed to have antibacterial, antinociceptive, antibacterial activities, antifungal, and anticancerous qualities. Anti-inflammatory chemicals, including eugenol and flavonoids, are found in clove that help decrease inflammation and alleviate pain. The anti-inflammatory and analgesic qualities of clove oil have made it a popular natural cure for toothaches and gum discomfort. Due to its therapeutic potential, it has been used as a bioactive ingredient in coating fresh fruits and vegetables. This review article outlines the potential food processing applications of clove essential oil. The chemical structures of components, bioactive properties, and medicinal potential of clove essential oil, including phytochemical importance in food, have also been thoroughly addressed.

3.
Mol Biotechnol ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752300

RESUMO

In this study, we successfully synthesized selenium nanoparticles (P-SeNPs) using an environment-friendly approach. This method involves utilizing the aqueous peel extract of Benincasa hispida (ash gourd) in combination with selenium salt. Through our innovative procedure, we harnessed the impressive bio-reduction capabilities, therapeutic potential, and stabilizing attributes inherent in B. hispida. This results in the formation of P-SeNPs with distinct and noteworthy qualities. Our findings were thoroughly substantiated through comprehensive characterizations employing various techniques, including ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and Fourier transform infrared spectroscopy (FTIR). The nanoparticles exhibited a spherical shape, considerable size (22.32 ± 2 nm), uniform distribution, and remarkable stability (-24 mV), all of which signify the effective integration of the phytoconstituents of B. hispida. Furthermore, P-SeNPs displayed robust antibacterial efficacy against pathogenic bacterial strains, as indicated by their low minimum inhibitory concentration values. Our research also revealed the remarkable ability of P-SeNPs to fight cancer, as demonstrated by their impressive IC50 value of 0.19 µg/mL against HeLa cells, while showing no harm to primary human osteoblasts, while simultaneously demonstrating no toxicity toward primary human osteoblasts. These pivotal findings underscore the transformative nature of P-SeNPs, which holds promise for targeted antibacterial treatment and advancements in cancer therapeutics. The implications of these nanoparticles extend to their potential applications in therapies, diagnostics, and various biomedical contexts. Notably, the environmentally sustainable synthesis process and exceptional properties established this study as a significant milestone in the field of nanomedicine, paving the way for a more promising and health-enhancing future.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37537776

RESUMO

Algae is emerging as a bioresource with high biological potential. Various algal strains have been used in traditional medicines and human diets worldwide. They are a rich source of bioactive compounds like ascorbic acid, riboflavin, pantothenate, biotin, folic acid, nicotinic acid, phycocyanins, gamma-linolenic acid (GLA), adrenic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), etc. Beta-carotene, astaxanthin, and phycobiliproteins are different classes of pigments that are found in algae. They possess antioxidant, anti-inflammatory and anticancer properties. The sulfur-coated polysaccharides in algae have been used as an anticancer, antibacterial, and antiviral agent. Scientists have exploited algal-derived bioactive compounds for developing lead molecules against several diseases. Due to the surge in research on bioactive molecules from algae, industries have started showing interest in patenting for the large-scale production of bioactive compounds having applications in sectors like pharmaceuticals, food, and beverage. In the food industry, algae are used as a thickening, gelling, and stabilizing agent. Due to their gelling and thickening characteristics, the most valuable algae products are macroalgal polysaccharides such as agar, alginates, and carrageenan. The high protein, lipid, and nutrient content in microalgae makes it a superfood for aquaculture. The present review aims at describing various non-energy-based applications of algae in pharmaceuticals, food and beverage, cosmetics, and nutraceuticals. This review attempts to analyze information on algal-derived drugs that have shown better potential and reached clinical trials.

5.
Food Sci Biotechnol ; 32(7): 885-902, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37123062

RESUMO

Fruits are an abundant source of minerals and nutrients. High nutritional value and easy-to-consume property have increased its demand. In a way to fulfil this need, farmers have increased production, thus making it available for consumers in various regions. This distribution of fruits to various regions deals with many associated problems like deterioration and spoilage. In a way, the common practices that are being used are stored at low temperatures, preservation with chemicals, and many more. Recently, edible coating has emerged as a promising preservation technique to combat the above-mentioned problems. Edible coating stands for coating fruits with bioactive compounds which maintains the nutritional characteristics of fruit and also enhances the shelf life. The property of edible coating to control moisture loss, solute movement, gas exchange, and oxidation makes it most suitable to use. Preservation is uplifted by maintaining the nutritional and physicochemical properties of fruits with the effectiveness of essential oils. The essential oil contains antioxidant, antimicrobial, flavor, and probiotic properties. The utilization of essential oil in the edible coating has increased the property of coating. This review includes the process of extraction, potential benefits and applications of essential oils in food industry.

6.
J Food Sci Technol ; 60(4): 1284-1293, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936113

RESUMO

Machine learning techniques were employed to evaluate the effect of process parameters viz. microwave power (100 W, 300 W, 600 W); pH (1, 1.5, 2); and microwave time (the 60 s, 120 s, 180 s) on the pectin yield from Citrus limetta peel. A fourth-order polynomial function of 66.60 scales was used by the Support Vector Regression (SVR) model at an epsilon (ε) value of 0.003. The co-efficient of determination (R2) and root mean square error-values for training data and test data were 0.984; 0.77 and 0.993; 0.66 respectively. At optimized conditions, microwave power 600 W, pH 1, and time 180 s the best yield of 32.75% was obtained. The integrity of pectin skeletal was confirmed with FTIR and 1H NMR spectrums. The physicochemical analysis revealed that CLP is a high-methoxyl pectin (HMP) with a 63.20 ± 0.88% degree of esterification, 798.45 ± 26.15 equivalent weight, 8.06 ± 0.62% methoxyl content, 67.93 ± 3.36 AUA content, 6.27 ± 0.27 g water/g pectin WHC, 2.68 ± 0.20 g oil/g pectin OHC, low moisture, ash and protein content of 6.85 ± 0.10%, 3.87 ± 0.10% and 2.61 ± 0.06% respectively, which can be utilized as a food additive. Therefore, pectin extraction from Citrus limetta peel using a greener technique like MAE is an eco-friendly, time-saving approach to transform waste into a versatile food additive.

7.
J Food Sci Technol ; 60(3): 975-986, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908343

RESUMO

In this study, a five-factorial central composite design was employed to optimize pectin extraction from novel source, through ultrasound-assisted extraction. A 35.58% yield was obtained under optimized conditions of pH 1.0, solid (g): liquid (mL) ratio 1:24, amplitude 84.2 Hz, duty cycle 23 s/30 s, and time 30 min. The equivalent weight, methoxyl content, anhydrouronic acid content, degree of esterification, water-holding capacity, and oil-holding capacity of the extracted pectin were 796.40 ± 2.07, 8.29 ± 0.38%, 71.32 ± 0.54%, 64.66 ± 2.08%, 8.04 ± 0.10 g water/g pectin, and 2.24 ± 030 g oil/g pectin, respectively. The chemical profile of the extracted pectin was assessed with FTIR and NMR analyses. The extracted pectin was utilized as a butter substitute in cookies. Up to 30% butter in cookies could be replaced with the extracted pectin without altering the sensory and physicochemical properties. Overall, results of presented work suggest that using waste-derived pectin as a fat substitute in cookies offers a sustainable and health-promoting approach for converting waste into wealth.

8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430714

RESUMO

Diabetes is a long-term metabolic disorder characterized by persistently elevated blood sugar levels. Chronic hyperglycemia enhances glucose-protein interactions, leading to the formation of advanced glycation end products (AGEs), which form irreversible cross-links with a wide variety of macromolecules, and accumulate rapidly in the body tissues. Thus, the objective of this study was to assess the therapeutic properties of C-phycocyanin (C-PC) obtained from Plectonema species against oxidative stress, glycation, and type 2 diabetes mellitus (T2DM) in a streptozotocin (STZ)-induced diabetic Wistar rat. Forty-five days of C-PC administration decreased levels of triglycerides (TGs), blood glucose, glycosylated hemoglobin, (HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), liver and kidney function indices, and raised body weight in diabetic rats. C-PC suppressed biochemical glycation markers, as well as serum carboxymethyllysine (CML) and fluorescent AGEs. Additionally, C-PC maintained the redox state by lowering lipid peroxidation and protein-bound carbonyl content (CC), enhancing the activity of high-density lipoprotein cholesterol (HDL-C) and renal antioxidant enzymes, and preserving retinal and renal histopathological characteristics. Thus, we infer that C-PC possesses antidiabetic and antiglycation effects in diabetic rats. C-PC may also act as an antidiabetic and antiglycation agent in vivo that may reduce the risk of secondary diabetic complications.


Assuntos
Produtos Biológicos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Ratos , Animais , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Produtos Biológicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ratos Wistar , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hiperglicemia/tratamento farmacológico , HDL-Colesterol
9.
Environ Res ; 215(Pt 2): 114198, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063912

RESUMO

In this "plastic era" with the increased use of plastic in day today's life the accumulation of its degraded products like microplastics or plastic additives such as Bisphenol A(BPA) is also increasing. BPA is an endocrine-disrupting chemical used as a plasticizing agent in clear plastic, building materials, coatings, and epoxy resin. Several enzymes including laccases and lipases have been studied for the reduction of BPA toxicity. Over the decades of encountering these toxicants, microorganisms have evolved to degrade different classes of plastic additives. Since the degradation of BPA is a long process thus meta-omics approaches have been employed to identify the active microbiota and microbial dynamics involved in the mitigation of BPA. It is also necessary to investigate the impact of processing activities on transit of BPA in food items and to limit its entrance in food world. This review summarizes a comprehensive overview on BPA sources, toxicity, bio-based mitigation approaches along with a deeper understanding of multi-omics approaches for its reduction and risk analysis. Knowledge gaps and opportunities have been comprehensively compiled that would aid the state-of-the-art information in the available literature for the researchers to further address this issue.


Assuntos
Disruptores Endócrinos , Plásticos , Compostos Benzidrílicos/análise , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Resinas Epóxi , Microplásticos , Fenóis , Medição de Risco
10.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 68-82, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809301

RESUMO

C-phycocyanin (C-PC), the integral blue-green algae (BGA) constituent has been substantially delineated for its biological attributes. Numerous reports have illustrated differential extraction and purification techniques for C-PC, however, there exists paucity in a broadly accepted process of its isolation. In the present study, we reported a highly selective C-PC purification and characterization method from nontoxic, filamentous and non-heterocystous cyanobacterium Plectonema sp. C-PC was extracted by freeze-thawing, desalted and purified using ion-exchange chromatography. The purity of C-PC along with its concentration was found to be 4.12 and 245 µg/ml respectively.  Comparative characterization of standard and purified C-PC was performed using diverse spectroscopic techniques namely Ultra Violet-visible, fluorescence spectroscopy and Fourier transform infrared (FT-IR). Sharp peaks at 620 nm and 350 nm with UV-visible and FT-IR spectroscopy respectively, confirmed amide I bands at around 1638 cm-1 (C=O stretching) whereas circular dichroism (CD) spectra exhibited α-helix content of secondary structure of standard 80.59% and 84.59% of column purified C-PC. SDS-PAGE exhibited two bands of α and ß subunits 17 and 19 kDa respectively. HPLC evaluation of purified C-PC also indicated a close resemblance of retention peak time (1.465 min, 1.234 min, 1.097 min and 0.905 min) with standard C-PC having retention peak timing of 1.448 min, 1.233 min and 0.925 min. As a cautious approach, the purified C-PC was further lyophilized to extend its shelf life as compared to its liquid isoform. To evaluate the bioactive potential of the purified C-PC in silico approach was attempted. The molecular docking technique was carried out of C-PC as a ligand-protein with free radicals and α-amylase, α-glucosidase, glycogen synthase kinase-3 and glycogen phosphorylase enzymes as receptors to predict the free radical scavenging (antioxidant) and to target antidiabetic property of C-PC. In both receptors free radicals and enzymes, ligand C-PC plays an important role in establishing interactions within the cavity of active sites. These results established the antioxidant potential of C-PC and also give a clue towards its antidiabetic potential warranting further research.


Assuntos
Cianobactérias , Plectonema , Antioxidantes/química , Antioxidantes/farmacologia , Cianobactérias/química , Radicais Livres , Hipoglicemiantes , Ligantes , Simulação de Acoplamento Molecular , Ficocianina/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Bioresour Technol ; 351: 127064, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351555

RESUMO

Globally the generation and mismanagement of waste from fruit processing and post-harvest impose a severe burden on waste management strategies along with environmental pollution, health hazards. Citrus waste is one of such worrying fruit waste, which is rich in several value-added chemicals, including pectin. Pectin is a prebiotic polysaccharide possessing a multitude of health benefits. Citrus pectin has excellent gelling, thickening, water holding capacity, and encapsulating properties, which pave its functionality in versatile industrial fields including food processing and preservation, drug and therapeutic agents, cosmetics, and personal care products. The utilization of citrus wastes to derive valuable bioproducts can offer an effective approach towards sustainable waste management. With the ever-increasing demand, several strategies have been devised to increase the efficiency of pectin recovery from citrus waste. This review article discusses the sources, effect, and technology-mediated valorization of citrus waste, the functional and nutritive application of pectin along with its socio-economic and environmental perspective.


Assuntos
Citrus , Gerenciamento de Resíduos , Citrus/química , Frutas/química , Pectinas , Resíduos/análise
12.
Curr Protein Pept Sci ; 21(9): 899-915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039678

RESUMO

The non-enzymatic interaction of sugar and protein resulting in the formation of advanced glycation end products responsible for cell signaling alterations ultimately leads to the human chronic disorders such as diabetes mellitus, cardiovascular diseases, cancer, etc. Studies suggest that AGEs upon interaction with receptors for advanced glycation end products (RAGE) result in the production of pro-inflammatory molecules and free radicals that exert altered gene expression effect. To date, many studies unveiled the potent role of synthetic and natural agents in inhibiting the glycation reaction at a lesser or greater extent. This review focuses on the hazards of glycation reaction and its inhibition by natural antioxidants, including polyphenols.


Assuntos
Antioxidantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Polifenóis/uso terapêutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Produtos Finais de Glicação Avançada/genética , Produtos Finais de Glicação Avançada/metabolismo , Glioxal/metabolismo , Humanos , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Extratos Vegetais/química , Carbonilação Proteica , Aldeído Pirúvico/metabolismo , Transdução de Sinais
13.
J Plant Physiol ; 240: 153010, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352021

RESUMO

Plant-growth-promoting rhizobacteria (PGPR) improve plant growth by altering the root architecture, although the mechanisms underlying this alteration have yet to be unravelled. Through microarray analysis of PGPR-treated rice roots, a large number of differentially regulated genes were identified. Ectopic expression of one of these genes, OsASR6 (ABA STRESS RIPENING6), had a remarkable effect on plant growth in Arabidopsis. Transgenic lines over-expressing OsASR6 had larger leaves, taller inflorescence bolts and greater numbers of siliques and seeds. The most prominent effect was observed in root growth, with the root biomass increasing four-fold compared with the shoot biomass increase of 1.7-fold. Transgenic OsASR6 over-expressing plants showed higher conductance, transpiration and photosynthesis rates, leading to an ˜30% higher seed yield compared with the control. Interestingly, OsASR6 expression led to alterations in the xylem structure, an increase in the xylem vessel size and altered lignification, which correlated with higher conductance. OsASR6 is activated by auxin and, in turn, increases auxin responses and root auxin sensitivity, as observed by the increased expression of auxin-responsive genes, such as SAUR32 and PINOID, and the key auxin transcription factor, ARF5. Collectively, these phenomena led to an increased root density. The effects of OsASR6 expression largely mimic the beneficial effects of PGPRs in rice, indicating that OsASR6 activation may be a key factor governing PGPR-mediated changes in rice. OsASR6 is a potential candidate for the manipulation of rice for improved productivity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/anatomia & histologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Oryza/química , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência
14.
Curr Drug Metab ; 18(2): 129-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28088890

RESUMO

Brain, the centre of the nervous system and an integral part the body, is protected by two anatomical and physiological barriers- Blood-Brain Barrier (BBB) and Blood-Cerebrospinal Fluid Barrier (BCSFB). Blood-Brain Barrier is a very complex and highly organized multicellular structure that shields the brain from harmful substances and invading organisms from the bloodstream and thus offering protection against various brain diseases and injuries. However, it also impede the effective delivery of drug to the brain, thus, preventing treatment of numerous neurological disorders. Even though various traditional approaches such as Intra-Cerebro-Ventricular (ICV) injection, use of implants, disruption of BBB and use of prodrugs have achieved some success in overcoming these barriers, researchers are continuously working for promising alternatives for improved brain drug delivery. Recent breakthroughs in the field of nanotechnology provide an appropriate solution to problems associated with these delivery approaches and thus can be effectively used to treat a wide variety of brain diseases. Thus, nanotechnology promises to bring a great future to the individuals with various brain disorders. This review provides a brief overview of various brain drug delivery approaches along with limitations. In addition, the significance of nanoparticles as drug carrier systems for effective brain specific drug delivery has been highlighted. To show the complexity of the problems to be overcome for improved brain drug delivery, a concise intercellular classification of the BBB along with general transport routes across it is also included.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Transporte Biológico , Humanos
15.
Inflamm Res ; 66(1): 97-105, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27770143

RESUMO

OBJECTIVE AND DESIGN: We present in this article 1H nuclear magnetic resonance (NMR)-based metabolic approach to screen the serum metabolic alterations in human gallbladder inflammation with chronic cholecystitis (CC). MATERIAL/METHODS: Total of 71 human serum samples was divided into two groups, (n = 41, CC) and (n = 30 control). 1H NMR metabolic profiling was carried out for investigation of metabolic alterations. Multivariate statistical analysis was applied for pattern recognition and identification of metabolites playing crucial role in gallbladder inflammation. Receiver operating curve (ROC) and pathway analysis on NMR data were also carried out to validate the findings. RESULTS: Serum metabolites such as glutamine, low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), alanine, branch chained amino acids (BCAA), histidine and tyrosine were found to be depleted whereas formate, lactate, 1,2-propanediol were found to be elevated in CC. Metabolic pathways associated with metabolite alteration have also been reported. CONCLUSIONS: NMR has been established for disease diagnosis along with identification of metabolic pattern recognition in biofluids. Gallstones cause inflammation of the gallbladder in the form of CC. Inflammation plays a major role in causation of gall bladder cancer and leads the way to malignancy. Metabolic analysis of CC may lead to early diagnosis of disease and its progression to gallbladder cancer.


Assuntos
Colecistite/sangue , Metabolômica , Biomarcadores/sangue , Formiatos/sangue , Ácido Glutâmico/sangue , Histidina/sangue , Humanos , Ácido Láctico/sangue , Lipoproteínas/sangue , Propilenoglicóis/sangue , Espectroscopia de Prótons por Ressonância Magnética
16.
PLoS One ; 11(11): e0166351, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832205

RESUMO

BACKGROUND: Gallstones (GS) associated diseases are among the most recurrent and frequent diseases delineated in India and United Arab Emirates. Several reports suggest that the association of GS with gallbladder cancer (GBC) is very high in Northern part of India; however, its occurrence in UAE and Southern part of India is notably low. Therefore, in the present study, we aimed to perform compositional analysis of GS in three different geographical areas by Solid State Nuclear Magnetic Resonance and Fourier Transformed Infrared spectroscopy. METHODS: Natural abundance 13C cross polarization magic angle spinning Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy is employed for the analysis of human gallstone. RESULTS: Cholesterol, bilirubin and calcium carbonate were present in variant concentrations in GS obtained from three different geographical regions. Cholesterol was present predominantly in gallstones from North India. Bilirubin was found to be a main constituent in gallstones pertaining to South India. Whereas GS from UAE showed both cholesterol and bilirubin as their major constituents. Calcium carbonate was found in varying concentrations in gallstones acquired from different regions. CONCLUSION: Variation in environmental condition and dietary habits may contribute and affect the GS formation. Alterations in bile composition influence the GB and augment the crystallization of cholesterol. Analysis of different geographical regions GS could be an important stride to understand the etiology of GS diseases.


Assuntos
Bilirrubina/análise , Carbonato de Cálcio/análise , Colelitíase/patologia , Colesterol/análise , Vesícula Biliar/patologia , Cálculos Biliares/patologia , Colelitíase/epidemiologia , Feminino , Neoplasias da Vesícula Biliar/epidemiologia , Cálculos Biliares/epidemiologia , Humanos , Índia/epidemiologia , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Espectroscopia de Infravermelho com Transformada de Fourier , Emirados Árabes Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...